

Storm Water Drainage Calculations

For

16492 Los Gatos Blvd.
Los Gatos, CA 95032
APN: 532-07-085 & -086

By:

Hanna-Brunetti
7651 Egleberry St.
Gilroy, CA 95020
November 2025

HB JN: 22101

Introduction – Drainage Analysis

This report has been prepared for:

16492 Los Gatos Blvd.
Los Gatos, CA 95032

Existing Drainage Conditions

The existing site is approximately 27,426-SF in size and has a general slope in a north westerly direction. The property is currently developed by a liquor store and parking lot with some vegetation. The existing impervious surface is about 16,327-SF. The existing peak flow pre-development is 0.58 cfs.

Proposed Drainage Conditions

This project proposes to construct 10 new townhomes, a driveway, parking lot, and associated improvements. The new total impervious surface area is about 18,746-SF. The new post construction impervious area will increase by 2,419-SF and the total proposed peak flow post-development is 0.67 cfs. The post-development water runoff will be treated by (22) SC-800 Storm chambers and 3 Bioretention ponds along the frontage. The water will be conveyed through a series of storm drain pipes into the Chambers, and sheet flow into the Bioretention ponds.

Los Gatos' drainage requirements include matching the post-development 10-year storm with the pre-development 10-year storm runoff rate. A total of 4 outlet structures for each treatment facility is proposed to mitigate the increase in flow and allow the runoff to be released at/close to the pre-development rate. Outlet structure #1 has a 3.5-in orifice outlet, Outlet structure #2 has a 1-in orifice, Outlet structure #3 has a 0.65-in orifice, and Outlet structure #4 has a 0.95-in orifice. See Stormwater Control Plan for more details.

Storm Drain Analysis

See attached calculations for methods and assumptions.

June 23, 2025 12:05:38 PM. The GIS data used in this analysis was compiled from various sources. While deemed reliable, the Planning Office assumes no liability.

Property Location Information

APN: 532-07-085

Site Address: 16492 LOS GATOS BL LOS GATOS CA 95032-5525

Recorded Size (Assessor Database): 16,387 sq. ft. / 0.4 acres
TRA: 03000

Planning and Development Information

APN:53207085 is incorporated (LOS GATOS).

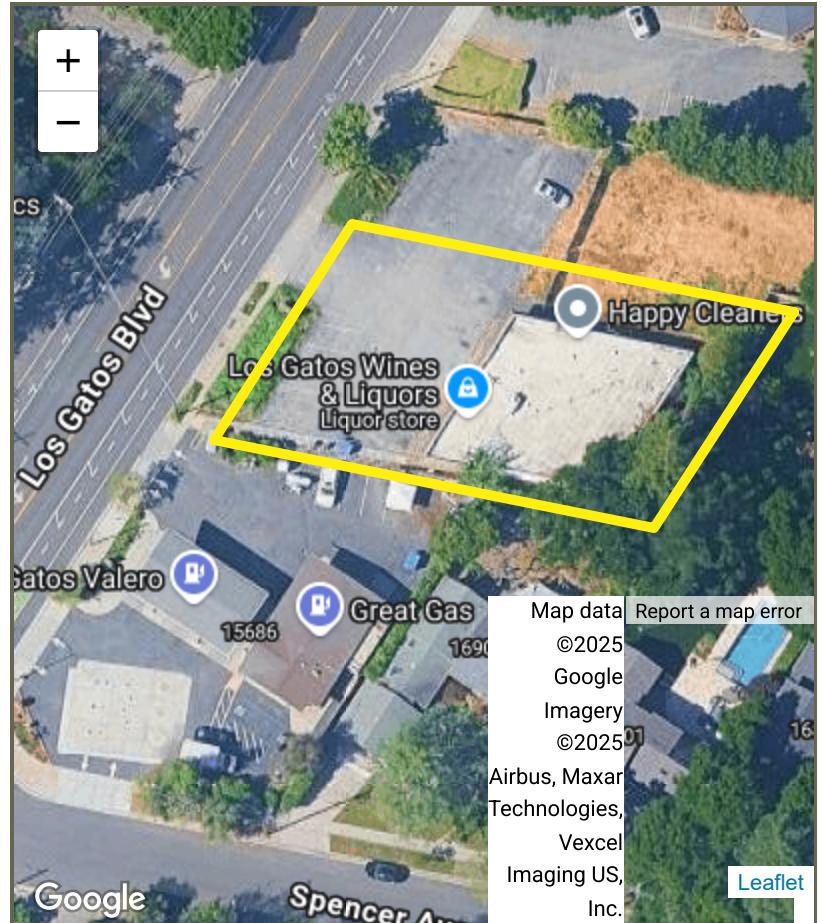
General Plan: USA

USA: Los Gatos (100%)

SOI: Los Gatos

Zoning: INCORPORATED

Supervisor District: 5


Approved Building Site: Research needed to evaluate parcel as a Building Site

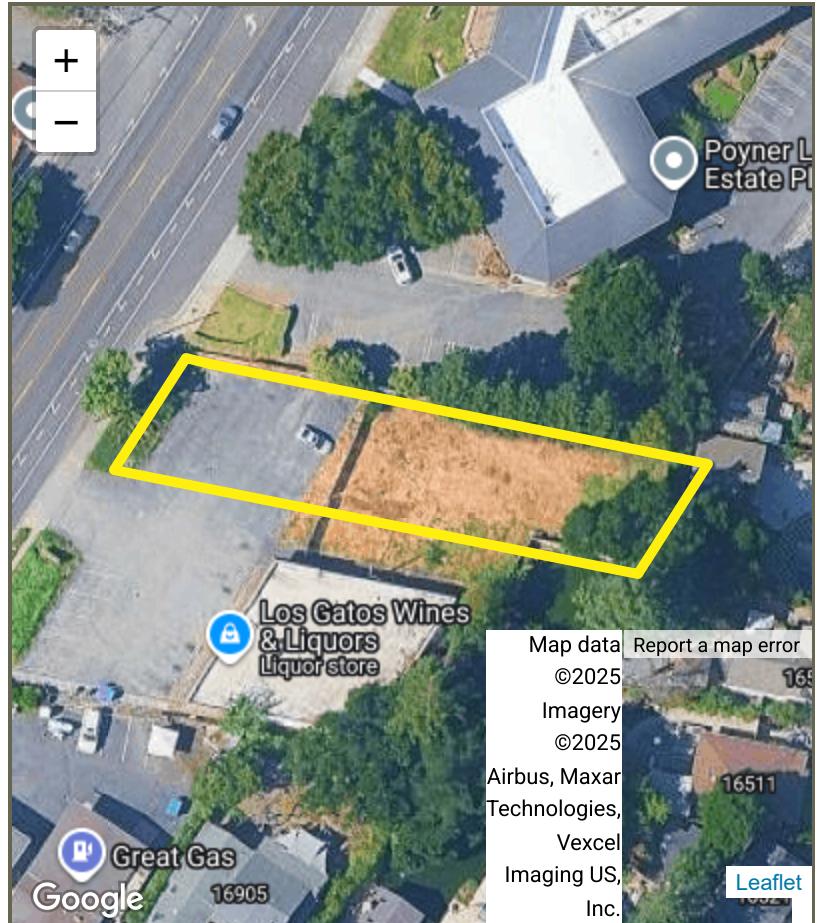
Special Area Policies and Information

- Los Gatos Hillside Specific Plan Area: IN
- Fire Responsibility Area: LRA (100%)
- Fire Protection District: Santa Clara County Central Fire Protection District
- Geohazard: County fault rupture hazard zone
- Historic Parcel: NO
- FEMA Flood Zone: X (100%)
- Sanitary District: West Valley Sanitation District
- Watershed: San Francisco Bay
- Rain isohyet: 27 inches

Nearest named creek: ROSS CREEK (1074 feet)

Nearest named lake: Vasona Reservoir (3709 feet)

November 20, 2025 09:04:37 AM. The GIS data used in this analysis was compiled from various sources. While deemed reliable, the Planning Office assumes no liability.


Property Location Information

APN: **532-07-086**

Site Address: **16492 LOS GATOS BL LOS GATOS CA 95032**

Recorded Size (Assessor Database): **9,902 sq. ft. / 0.2 acres**

TRA: **03000**

Planning and Development Information

APN:53207086 is incorporated (LOS GATOS).

General Plan: **USA**

USA: **Los Gatos (100%)**

SOI: **Los Gatos**

Zoning: **INCORPORATED**

Supervisor District: **5**

Approved Building Site: **Research needed to evaluate parcel as a Building Site**

Special Area Policies and Information

- Los Gatos Hillside Specific Plan Area: **IN**
- Fire Protection District: Santa Clara County Central Fire Protection District
- Geohazard: County fault rupture hazard zone
- Historic Parcel: NO
- FEMA Flood Zone: X (100%)
- Sanitary District: West Valley Sanitation District
- Watershed: San Francisco Bay
- Rain isohyet: 27 inches

Nearest named creek: ROSS CREEK (1043 feet)

Nearest named lake: Vasona Reservoir (3680 feet)

Provision C.3 Data Form

Which Projects Must Comply with Stormwater Requirements?

Effective July 1, 2023, the following projects must comply with Stormwater Requirements:

- **All development/redevelopment projects** (except single-family home projects) that create and/or replace **5,000 sq. ft.** or more of impervious surface on the project site must fill out this worksheet and submit it with the development project application.
- **All large single-family home projects** that create and/or replace **10,000 sq. ft.** or more of impervious surface on the project site must also fill out this worksheet.

These projects are called **Regulated Projects**. The Regulated Project area includes portions of the public right-of-way that are developed or redeveloped as part of the Regulated Project.

Excluded Projects - Interior remodeling projects, routine maintenance or repair projects such as re-roofing and re-surfacing, and smaller single-family homes that are not part of a larger plan of development are **NOT** required to complete this worksheet.

What is an Impervious Surface?

An impervious surface is a surface covering or pavement that prevents the land's natural ability to absorb and infiltrate rainfall/stormwater. Impervious surfaces include, but are not limited to rooftops, walkways, paved patios, driveways, parking lots, storage areas, impervious concrete and asphalt, gravel surfaces, and any other continuous watertight pavement or covering.

Pervious pavement, underlain with pervious soil and pervious storage material (e.g., drain rock), that infiltrates rainfall at a rate equal to or greater than surrounding unpaved areas OR that stores and infiltrates the water quality design volume specified in Provision C.3.d of the Municipal Regional Stormwater Permit (MRP), is not considered an impervious surface.

For More Information

The SCVURPPP [C.3 Stormwater Handbook](#) provides more information on selection of site design, source control, and treatment measures for a development project as well as guidance on preparing a stormwater control plan.

1. Project Information

Project Name: _____ APN # _____

Project Address: _____

Cross Streets: _____

Applicant/Developer Name: _____

Project Phase(s): _____ of _____ Engineer: _____

Project Type (Check all that apply): New Development Redevelopment

Private Public Large Detached Single-Family Home

Residential Commercial Industrial Mixed Use Institutional

Other _____

Project Description: _____

Project Watershed/Receiving Water (creek, river or bay): _____

2. Project Size

a. Total Site Area: _____ (ft ²)	b. Total Land Area Disturbed During Construction: _____ (ft ²) (including clearing, grading, stockpiling, or excavating)				
Project Totals	Total Existing (Pre-project) Area (ft ²)	Existing Area Retained ¹ (ft ²)	Existing Area Replaced ² (ft ²)	New Area Created ² (ft ²)	Total Post-Project Area (ft ²)
Impervious Area (IA)					
c. Total on-site IA					
d. Total off-site IA ³					
e. Total project IA					
f. Total new and replaced IA					
Pervious Area (PA)⁴					
g. Total on-site PA					
h. Total off-site PA ³					
i. Total project PA					
j. Total Project Area (2.e.+2.i.)					
k. Percent Replacement of IA in Redevelopment Projects: (Total Existing IA Replaced ÷ Total Existing IA) x 100% _____ %					

¹“Retained” means to leave existing IA in place. An IA that receives surface treatment (e.g., pavement resurfacing/slurry seal/grind) only is considered “retained”. This category does not apply to off-site areas.

²The “new” and “replaced” IA are based on the total project area and not specific locations within the project. Constructed IA on a project that does not exceed the total pre-project IA will be considered “replaced” IA. A project will have “new” IA only if the total post-project IA exceeds the total pre-project IA (total post-project IA – total pre-project IA = New IA).

³Off-site areas include sidewalks and other parts of the public right-of-way (e.g., roads, bike lanes, curbs, ramps, park strip) that are being reconstructed as part of the project footprint. Do not include frontage areas that are not being reconstructed as part of the project. Note that gravel is considered an impervious surface.

⁴Include bioretention areas, infiltration areas, green roofs, and pervious pavement in PA calculations.

3. State Construction General Permit Applicability:

a. Is #2.b. equal to 43,560 ft² (1 acre) or more?

Yes, applicant must obtain coverage under the State Construction General Permit (see https://www.waterboards.ca.gov/water_issues/programs/stormwater/construction.html)

No, applicant does not need coverage under the State Construction General Permit.

4. MRP Provision C.3 Applicability:

a. Is #2.f. equal to **5,000** ft² or more, or **10,000** ft² for single family homes?

Yes, C.3. source control, site design and treatment requirements apply

No, C.3. source control and site design requirements may apply – check with local agency

b. For redevelopment projects, is #2.k. equal to 50% or more?

Yes, C.3. requirements (site design and source control, as appropriate, and stormwater treatment) apply to the entire on-site area

No, C.3. requirements only apply to the impervious area created and/or replaced

5. Hydromodification Management (HM) Applicability:

a. Does the project create and/or replace one acre or more of impervious surface AND is the total post-project impervious area greater than the pre-project (existing) impervious area?

Yes (continue) No – exempt from HM, go to page 3

b. Is the project located in an area of HM applicability (green area) on the HM Applicability Map? www.scvurppp.org/hmp-map

Yes the project must implement HM requirements

No, the project is exempt from HM requirements

6. Selection of Specific Stormwater Control Measures:

Site Design Measures

- Minimize land disturbed (e.g., protect trees and soil)
- Minimize impervious surfaces (e.g., reduction in post-project impervious surface)
- Minimum-impact street or parking lot design (e.g., parking on top of or under buildings)
- Cluster structures/ pavement
- Disconnected downspouts (direct runoff from roofs, sidewalks, patios to landscaped areas)
- Pervious pavement⁵
- Green roof
- Other self-treating⁵ area (e.g., landscaped areas)
- Self-retaining⁵ area
- Rainwater harvesting and use (e.g., rain barrel, cistern for designated use)⁶
- Preserved open space
- Protected riparian and wetland areas/buffers
- Other _____

Source Control Measures

- Wash area/racks, drain to sanitary sewer⁷
- Covered dumpster area, drain to sanitary sewer⁷
- Sanitary sewer connection or accessible cleanout for swimming pool/spa/fountain⁷
- Beneficial landscaping (minimize irrigation, runoff, pesticides and fertilizers; promotes treatment)
- Outdoor material storage protection
- Covers, drains for loading docks, maintenance bays, fueling areas
- Maintenance (pavement sweeping, catch basin cleaning, good housekeeping)
- Storm drain labeling
- Other _____

Treatment Measures

- None (all impervious surface drains to self-retaining areas)
- Alternative compliance (treatment offsite or in-lieu)

LID Treatment (onsite & offsite)

- Bioretention area
- Flow-through planter
- Tree Well Filter or Trench with bioretention soils
- Rainwater harvest/use (e.g., cistern for designated use, sized for C.3.d treatment)
- Pervious pavement, sized for C.3.d treatment
- Infiltration trench
- Infiltration well/dry well
- Subsurface Infiltration System (e.g. vault or large diameter conduit over drain rock)
- Other _____

Non-LID Treatment Methods

- Proprietary high flow rate tree box filter⁸
- Proprietary high flow media filter (sand, compost, or proprietary media)⁸
- Vegetated filter strip⁹
- Extended detention basin⁹
- Vegetated swale⁹
- Other _____

Flow Duration Controls for Hydromodification Management (HM)

- Extended Detention basin
- Underground tank or vault
- Bioretention with outlet control
- Other _____

⁵ See SCVURPPP [C.3 Stormwater Handbook](#) for definitions. Pervious pavement areas should be sized per C.3.d treatment requirements.

⁶ Optional site design measure; does not have to be sized to comply with Provision C.3.d treatment requirements.

⁷ Subject to sanitary sewer authority requirements.

⁸ These treatment measures are only allowed if the project qualifies as a “Special Project”.

⁹ These treatment measures are only allowed as part of a multi-step treatment process (i.e., for pretreatment).

7. Stormwater Treatment Measure (STM) Sizing for Projects with Treatment Requirements

Stormwater Treatment Measure (STM)	Hydraulic Sizing Criteria Used*

*Key:

- 1a: Volume – WEF Method
- 1b: Volume – CASQA BMP Handbook Method
- 2a: Flow – Factored Flood Flow Method
- 2b: Flow – CASQA BMP Handbook Method
- 2c: Flow – Uniform Intensity Method
- 3: Combination Flow and Volume Design Basis

8. Does the project install 3,000 sf or more of pervious pavement (not including private-use patios at residences)?

Yes
 No

9. Additional Stormwater Treatment of Non-Regulated Areas - Is the project providing stormwater treatment for non-regulated impervious area that is not included in **Item 2 Project Size**? For example, stormwater treatment of right-of-way areas that are outside the project footprint, or treatment measures that are treating more right-of-way impervious area quantities than required.

Yes, complete the table below
 No

Additional Stormwater Treatment of Non-Regulated Areas

Non-Regulated Area Draining to Treatment Measure			Treatment Measures	Hydraulic Sizing Criteria
Impervious Area Treated (ft ²)	Pervious Area Treated (ft ²)	Total Area Treated (ft ²)		

10. Alternative Certification: Was the treatment system sizing and design reviewed by a qualified third-party professional that is not a member of the project team or agency staff?

Yes No Name of Third-party Reviewer _____

11. Alternative Compliance: Is the Regulated Project using alternative compliance (AC) for stormwater treatment, i.e., is stormwater treatment provided at an off-site location?

Yes. Complete the table below. No

Offsite Project Name and Address	
Offsite Project Description	
Offsite Project Reference # (if applicable)	
Offsite Project Watershed	
Offsite Project Construction Status	
Offsite Project Owner	
Total Regulated Project Impervious Area Requiring AC (ft^2)	
Impervious Area Treated at Offsite Project for AC (ft^2)	
Treatment Measure Used at Offsite Project to Provide AC	
Hydraulic Sizing Criteria for Treatment Measure at Offsite Project	
O&M Responsibility Mechanism for Offsite Project	

12. Operation & Maintenance Information

A. Property Owner's Name: _____

B. Responsible Party for Stormwater Treatment/Hydromodification Control O&M:

a. Name: _____

b. Address: _____

c. Phone/E-mail: _____

This section to be completed by Municipal staff.

O&M Responsibility Mechanism

Indicate how responsibility for O&M is assured. Check all that apply:

O&M Agreement

Other mechanism that assigns responsibility (describe below):

This section to be completed by Municipal staff (Note: This is an optional section that agencies should modify per their internal review and tracking process.)

Reviewed:

Community Development Department

Planning Division

Building Division

Public Works Department

Engineering

Other (Specify)

Return form to: _____

Data entry performed by: _____

PARCEL 1
537 MAPS 1-2

PROPOSED CONTRIBUTORY AREA TOTAL AREA = 27,426 SF

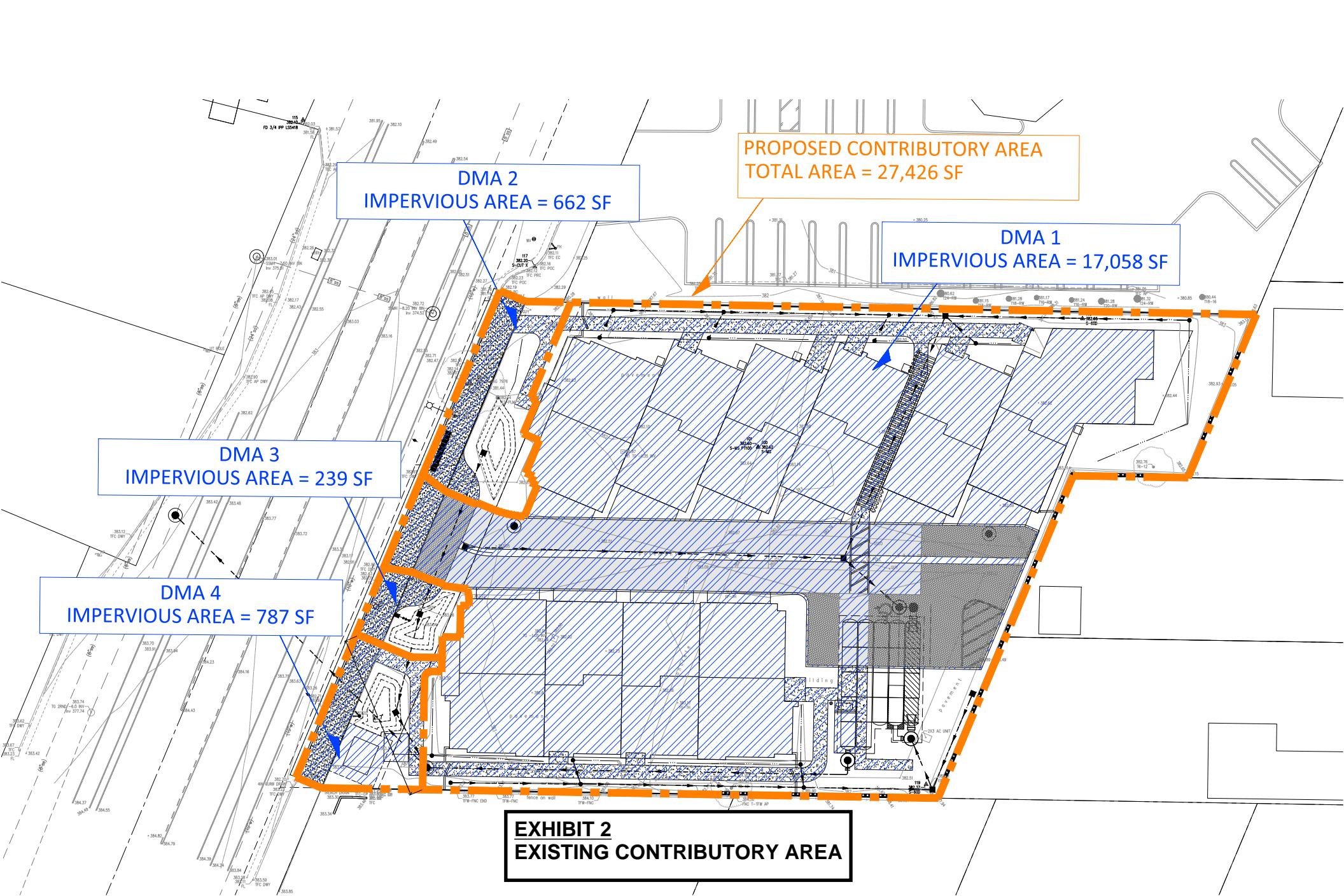
A P N 5 3 2 - 0 7 - 0 8 6

PRINCETON GARDEN PROPERTIES LLC

IMPERVIOUS AREA = 16,327 SF

- 07 -
ADY 'H' 24 MAPS 15

5 3 2 - 0 7 - 1 0


23
'H' MAPS 15

22
'H' MAPS 15

PN 532-07-103

EXHIBIT 1 **EXISTING CONTRIBUTORY AREA**

A P N 5 3 2 - 0 7 - 0 6 8
A U G U S T U T D 3 & 2 5

DMA 1

1) Drainage Analysis - 2-year storm

Total Area	=	0.56 AC
Existing Impervious Area	=	0.35 AC
Replaced Impervious Area	=	0.35 AC
New Impervious Area	=	0.04 AC
Length of Travel (L)	=	275 LF
Difference in Elevation (H)	=	0.52 FT
Effective Slope Line	=	0.0019 FT/FT

$$T_c = 0.0078 * (L^2/S)^{0.385} + 10 = 16.6 \text{ min}$$

$$\text{MAP} = 27.0"$$

2) Rainfall Intensity

Note: 2-yr storm from Drainage Manual Table B-1.

T (min)	A	B
15	0.2948	0.0047
16.6	0.3025	0.0050
30	0.3679	0.0079

$$\text{Depth} = A + B(\text{MAP})$$

$$x = 0.4388 \text{ in at } 16.6 \text{ min}$$

$$\text{Intensity: } I = x/D = 1.5870 \text{ in/hr}$$

3) Rate of Runoff

Note: C-Values from Drainage Manual Table 3-1.

Weighted C-Value	Pre-Development		Post-Development		Note: Hardscape Post Dev: New + Replaced Impervious Area
	acres	c-value	acres	c-value	
	0.35	0.9	0.39	0.9	
	0.20	0.10	0.16	0.10	
		0.61		0.66	
	$Q_2 = C I A$				
	$Q_{2\text{pre}} = 0.53 \text{ cfs}$		$Q_{2\text{post}} = 0.59 \text{ cfs}$		

4) Restrictor Size for $Q_{2\text{pre}}$ Outflow

$$\text{Outlet 1} \quad D = 2 * (Q_{2\text{pre}} / (P_i * C_d * (2gH)^{0.5}))^{0.5}$$

$Q_{2\text{pre}}$	=	0.53 cfs	
C_d	=	0.65	
h_1	=	378.35	Base Stone Elev.
h_2	=	380.60	top of water surface
		27.0 in.	
H (head)	=	2.25 ft. ($H_2 - H_1$)	
Max			
Diameter	=	3.54 in.	
use	3.50	in.	$Q_{\text{out}} = C_d * A * (2gh)^{0.5}$
			$Q_{\text{out}} = 0.52 \text{ cfs}$

Project: 16492 Los Gatos Blvd
JN: 22101

Date: 11/18/2025

10-year Storm: Volume Calculations

			Infiltration		
Area =	0.56	acre	Area =	890	sf
Orifice Outflow =	0.52	cfs	Infiltration Rate =	37.83	in/hr
MAP =	27	inch	Factor of Safety =	2	
			0 ltration Rate = A * I * 1/12 (ft/in) * 1/ 60 (min/hr) /FS		
			Basin Infiltration Rate =	23.38 ft ³ /min	

T	MAP =27"		10 yr Depth (in)	Volume In (ft ³)	Volume Out (ft ³)	Volume Infiltrated (ft ³)	Storage (ft ³)
	A	B					
5 min	0.201876	0.002063	0.257577	422.9929	156.76	116.91	149.32
10 min	0.258682	0.003569	0.355045	583.0549	313.53	233.81	35.72
15 min	0.294808	0.00471	0.421978	692.9723	470.29	350.72	-128.03
30 min	0.367861	0.007879	0.580594	953.4515	940.58	701.43	-688.56
1 hr	0.427723	0.014802	0.827377	1358.719	1881.16	1402.86	-1925.30
2 hr	0.522608	0.027457	1.263947	2075.654	3762.32	2805.73	-4492.39
3 hr	0.59166	0.038944	1.643148	2698.378	5643.47	4208.59	-7153.68
6 hr	0.625054	0.070715	2.534359	4161.924	11286.95	8417.18	-15542.20
12 hr	0.641638	0.11166	3.656458	6004.635	22573.90	16834.35	-33403.61
		Max Storage		149			

Modified Rational Method - Detention Calculation

Existing Tc in Contributory Area

Length 275 ft see Drainage Site Plan

High Elev 383.64 ft

Low Elev 383.12

Slope 0.0019

Tc per Santa Clara Co 3.4.1 Natural Watershed

t_c = 16.6 min

MAP = 27 inches

C_{pre} = 0.53

C_{post} = 0.59

Area = 0.56 acres

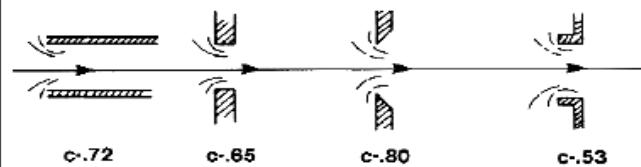
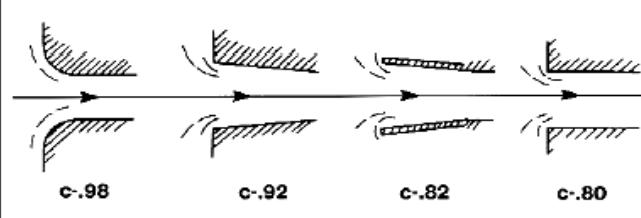
Storage Volume Req. = 149 CF

Orifice Calculation

Sized for 10-year storm

$$D = 2 * (Q_{pre10} / (\pi * C_o * (2gH)^{0.5}))^{0.5}$$

Q_{pre10} = 0.535 cfs



C_o = 0.65

H (head) = 2.25 ft. (to provide req'd storage)

Max = 3.54 in.

Diameter =

Use: 3.5 inch hole in outlet weir

DMA 2

1) Drainage Analysis - 2-year storm

Total Area	=	0.03 AC
Existing Impervious Area	=	0.01 AC
Replaced Impervious Area	=	0.01 AC
New Impervious Area	=	0.00 AC
Length of Travel (L)	=	65 LF
Difference in Elevation (H)	=	0.67 FT
Effective Slope Line	=	0.0103 FT/FT

$$T_c = 0.0078 * (L^2/S)^{0.385} + 10 = 11.1 \text{ min}$$

$$\text{MAP} = 27.0"$$

2) Rainfall Intensity

Note: 2-yr storm from Drainage Manual Table B-1.

T (min)	A	B
10	0.2587	0.0036
11.1	0.2668	0.0038
15	0.2948	0.0047

$$\text{Depth} = A + B(\text{MAP})$$

$$x = 0.3702 \text{ in at } 11.1 \text{ min}$$

$$\text{Intensity: } I = x/D = 1.9956 \text{ in/hr}$$

3) Rate of Runoff

Note: C-Values from Drainage Manual Table 3-1.

Weighted C-Value	Pre-Development		Post-Development		Note: Hardscape Post Dev: New + Replaced Impervious Area
	acres	c-value	acres	c-value	
	0.01	0.9	0.02	0.9	
	0.02	0.10	0.02	0.10	
		0.37		0.47	
	$Q_2 = C I A$				
$Q_{2\text{pre}} = 0.02 \text{ cfs}$		$Q_{2\text{post}} = 0.03 \text{ cfs}$			

4) Restrictor Size for $Q_{2\text{pre}}$ Outflow

$$\text{Outlet 1} \quad D = 2 * (Q_{2\text{pre}} / (P_i * C_d * (2gH)^{0.5}))^{0.5}$$

$Q_{2\text{pre}}$	=	0.02 cfs	
C_d	=	0.65	
h_1	=	381.00	Bottom pond elev.
h_2	=	381.54	top of water surface
		6.5 in.	Depth of ponding
H (head)	=	0.54 ft. ($H_2 - H_1$)	
Max			
Diameter	=	1.07 in.	
use	1.00	in.	$Q_{\text{out}} = C_d * A * (2gh)^{0.5}$
			$Q_{\text{out}} = 0.02 \text{ cfs}$

Project: 16492 Los Gatos Blvd
JN: 22101

Date: 11/20/2025

10-year Storm: Volume Calculations

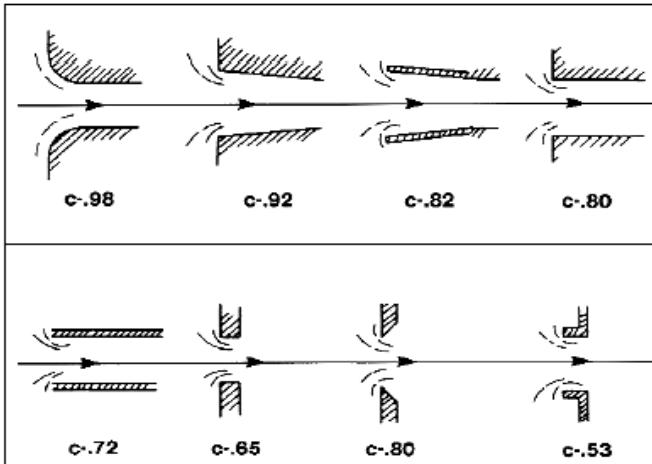
			Infiltration		
Area =	0.03	acre	Area =	40	sf
Orifice Outflow =	0.02	cfs	Infiltration Rate =	37.83	in/hr
MAP =	27	inch	Factor of Safety =	1	
			0 ltration Rate = A * I * 1/12 (ft/in) * 1/ 60 (min/hr) /FS		
			Basin Infiltration Rate =	2.10 ft ³ /min	

T	MAP =27"		10 yr Depth (in)	Volume In (ft ³)	Volume Out (ft ³)	Volume Infiltrated (ft ³)	Storage (ft ³)
	A	B					
5 min	0.201876	0.002063	0.257577	19.04138	6.28	10.51	2.25
10 min	0.258682	0.003569	0.355045	26.2467	12.56	21.02	-7.33
15 min	0.294808	0.00471	0.421978	31.19472	18.84	31.53	-19.17
30 min	0.367861	0.007879	0.580594	42.92041	37.67	63.05	-57.80
1 hr	0.427723	0.014802	0.827377	61.16384	75.35	126.10	-140.28
2 hr	0.522608	0.027457	1.263947	93.43728	150.69	252.20	-309.46
3 hr	0.59166	0.038944	1.643148	121.4697	226.04	378.30	-482.87
6 hr	0.625054	0.070715	2.534359	187.3525	452.08	756.60	-1021.33
12 hr	0.641638	0.11166	3.656458	270.3037	904.16	1513.20	-2147.06
		Max Storage		2			

Modified Rational Method - Detention Calculation

Existing Tc in Contributory Area

Length 65 ft see Drainage Site Plan
High Elev 382.88 ft
Low Elev 382.21
Slope 0.0103
Tc per Santa Clara Co 3.4.1 Natural Watershed
 $t_c = 11.1 \text{ min}$
MAP = 27 inches
 $C_{pre} = 0.02$
 $C_{post} = 0.03$
Area = 0.03 acres
Storage Volume Req. = 2 CF


Orifice Calculation

Sized for 10-year storm

$$D = 2 * (Q_{pre10} / (\pi * C_o * (2gH)^{0.5}))^{0.5}$$

$Q_{pre10} = 0.024 \text{ cfs}$
 $C_o = 0.65$
 $H \text{ (head)} = 0.54 \text{ ft. (to provide req'd storage)}$
Max = 1.07 in.
Diameter

Use: 1.0 inch hole in outlet weir

DMA 3

1) Drainage Analysis - 2-year storm

Total Area	=	0.013 AC
Existing Impervious Area	=	0.004 AC
Replaced Impervious Area	=	0.004 AC
New Impervious Area	=	0.001 AC
Length of Travel (L)	=	31 LF
Difference in Elevation (H)	=	0.43 FT
Effective Slope Line	=	0.0139 FT/FT

$$T_c = 0.0078 * (L^2/S)^{0.385} + 10 = 10.6 \text{ min}$$

$$\text{MAP} = 27.0"$$

2) Rainfall Intensity

Note: 2-yr storm from Drainage Manual Table B-1.

T (min)	A	B
10	0.2587	0.0036
10.6	0.2628	0.0037
15	0.2948	0.0047

$$\text{Depth} = A + B(\text{MAP}) \\ x = 0.3627 \text{ in at } 10.6 \text{ min}$$

$$\text{Intensity: } I = x/D = 2.0587 \text{ in/hr}$$

3) Rate of Runoff

Note: C-Values from Drainage Manual Table 3-1.

Weighted C-Value	Pre-Development		Post-Development		Note: Hardscape Post Dev: New + Replaced Impervious Area
	acres	c-value	acres	c-value	
	0.004	0.9	0.005	0.9	
	0.01	0.10	0.007	0.10	
		0.35		0.44	
	$Q_2 = C I A$				
	$Q_{2\text{pre}} = 0.01 \text{ cfs}$		$Q_{2\text{post}} = 0.01 \text{ cfs}$		

4) Restrictor Size for $Q_{2\text{pre}}$ Outflow

$$\text{Outlet 1} \quad D = 2 * (Q_{2\text{pre}} / (P_i * C_d * (2gH)^{0.5}))^{0.5}$$

$Q_{2\text{pre}}$	=	0.01 cfs	
C_d	=	0.65	
h_1	=	381.00	Bottom pond elev.
h_2	=	381.58	top of water surface
		7.0 in.	Depth of ponding
H (head)	=	0.58 ft. ($H_2 - H_1$)	
Max			
Diameter	=	0.65 in.	
use	0.65	in.	$Q_{\text{out}} = C_d * A * (2gh)^{0.5}$
			$Q_{\text{out}} = 0.01 \text{ cfs}$

Project: 16492 Los Gatos Blvd
JN: 22101

Date: 11/19/2025

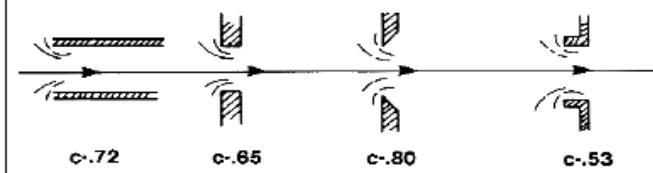
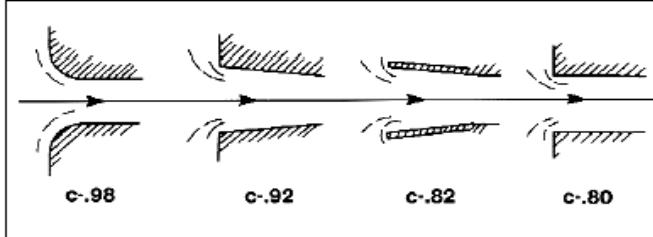
10-year Storm: Volume Calculations

			Infiltration		
Area =	0.01	acre	Area =	15	sf
Orifice Outflow =	0.01	cfs	Infiltration Rate =	37.83	in/hr
MAP =	27	inch	Factor of Safety =	1	
			0 ltration Rate = A * I * 1/12 (ft/in) * 1/ 60 (min/hr) /FS		
			Basin Infiltration Rate =	0.79 ft ³ /min	

T	MAP =27"		10 yr Depth (in)	Volume In (ft ³)	Volume Out (ft ³)	Volume Infiltrated (ft ³)	Storage (ft ³)
	A	B					
5 min	0.201876	0.002063	0.257577	7.098393	2.76	3.94	0.39
10 min	0.258682	0.003569	0.355045	9.784448	5.53	7.88	-3.63
15 min	0.294808	0.00471	0.421978	11.62901	8.29	11.82	-8.49
30 min	0.367861	0.007879	0.580594	16.0002	16.59	23.64	-24.23
1 hr	0.427723	0.014802	0.827377	22.80113	33.18	47.29	-57.66
2 hr	0.522608	0.027457	1.263947	34.83227	66.35	94.58	-126.10
3 hr	0.59166	0.038944	1.643148	45.28242	99.53	141.86	-196.11
6 hr	0.625054	0.070715	2.534359	69.84271	199.06	283.73	-412.94
12 hr	0.641638	0.11166	3.656458	100.7659	398.12	567.45	-864.81
		Max Storage		0.4			

Modified Rational Method - Detention Calculation

Existing Tc in Contributory Area



Length 31 ft see Drainage Site Plan
 High Elev 383.28 ft
 Low Elev 382.85
 Slope 0.0139
 Tc per Santa Clara Co 3.4.1 Natural Watershed
 $t_c = 10.6 \text{ min}$
 MAP = 27 inches
 $C_{pre} = 0.01$
 $C_{post} = 0.01$
 Area = 0.01 acres
 Storage Volume Req. = 0.4 CF

Orifice Calculation

Sized for 10-year storm

$$D = 2 * (Q_{pre10} / (\pi * C_o * (2gH)^{0.5}))^{0.5}$$

$Q_{pre10} = 0.009 \text{ cfs}$
 $C_o = 0.65$
 $H \text{ (head)} = 0.58 \text{ ft. (to provide req'd storage)}$
 Max = 0.65 in.
 Diameter = 0.65 inch hole in outlet weir

DMA 4

1) Drainage Analysis - 2-year storm

Total Area	=	0.027 AC
Existing Impervious Area	=	0.008 AC
Replaced Impervious Area	=	0.008 AC
New Impervious Area	=	0.010 AC
Length of Travel (L)	=	48 LF
Difference in Elevation (H)	=	0.81 FT
Effective Slope Line	=	0.0169 FT/FT

$$T_c = 0.0078 * (L^2/S)^{0.385} + 10 = 10.7 \text{ min}$$

$$\text{MAP} = 27.0"$$

2) Rainfall Intensity

Note: 2-yr storm from Drainage Manual Table B-1.

T (min)	A	B
10	0.2587	0.0036
10.7	0.2640	0.0037
15	0.2948	0.0047

$$\text{Depth} = A + B(\text{MAP}) \\ x = 0.3649 \text{ in at } 10.7 \text{ min}$$

$$\text{Intensity: } I = x/D = 2.0388 \text{ in/hr}$$

3) Rate of Runoff

Note: C-Values from Drainage Manual Table 3-1.

Weighted C-Value	Pre-Development		Post-Development		Note: Hardscape Post Dev: New + Replaced Impervious Area
	acres	c-value	acres	c-value	
	0.008	0.9	0.018	0.9	
	0.019	0.10	0.009	0.10	
		0.34		0.63	
	$Q_2 = C I A$				
	$Q_{2\text{pre}} = 0.02 \text{ cfs}$		$Q_{2\text{post}} = 0.04 \text{ cfs}$		

4) Restrictor Size for $Q_{2\text{pre}}$ Outflow

$$\text{Outlet 1} \quad D = 2 * (Q_{2\text{pre}} / (P_i * C_d * (2gH)^{0.5}))^{0.5}$$

$Q_{2\text{pre}}$	=	0.02 cfs	
C_d	=	0.65	
h_1	=	381.00	Bottom pond elev.
h_2	=	381.55	top of water surface
		6.6 in.	Depth of ponding
H (head)	=	0.55 ft. ($H_2 - H_1$)	
Max			
Diameter	=	0.95 in.	
use	0.95	in.	$Q_{\text{out}} = C_d * A * (2gh)^{0.5}$
			$Q_{\text{out}} = 0.02 \text{ cfs}$

Project: 16492 Los Gatos Blvd
JN: 22101

Date: 11/19/2025

10-year Storm: Volume Calculations

			Infiltration		
Area =	0.03	acre	Area =	36	sf
Orifice Outflow =	0.02	cfs	Infiltration Rate =	37.83	in/hr
MAP =	27	inch	Factor of Safety =	1	
			0 ltration Rate = A * I * 1/12 (ft/in) * 1/ 60 (min/hr) /FS		
			Basin Infiltration Rate =	1.89 ft ³ /min	

T	MAP =27"		10 yr Depth (in)	Volume In (ft ³)	Volume Out (ft ³)	Volume Infiltrated (ft ³)	Storage (ft ³)
	A	B					
5 min	0.201876	0.002063	0.257577	19.93753	5.70	9.46	4.78
10 min	0.258682	0.003569	0.355045	27.48196	11.40	18.92	-2.84
15 min	0.294808	0.00471	0.421978	32.66286	17.11	28.37	-12.82
30 min	0.367861	0.007879	0.580594	44.94039	34.21	56.75	-46.02
1 hr	0.427723	0.014802	0.827377	64.04243	68.43	113.49	-117.87
2 hr	0.522608	0.027457	1.263947	97.83476	136.85	226.98	-266.00
3 hr	0.59166	0.038944	1.643148	127.1865	205.28	340.47	-418.56
6 hr	0.625054	0.070715	2.534359	196.1699	410.55	680.94	-895.32
12 hr	0.641638	0.11166	3.656458	283.0251	821.11	1361.88	-1899.96
		Max Storage		5			

Modified Rational Method - Detention Calculation

Existing Tc in Contributory Area

Length 48 ft see Drainage Site Plan

High Elev 383.64 ft

Low Elev 382.83

Slope 0.0169

Tc per Santa Clara Co 3.4.1 Natural Watershed

$t_c =$ 10.7 min

MAP = 27 inches

$C_{pre} =$ 0.02

$C_{post} =$ 0.04

Area = 0.03 acres

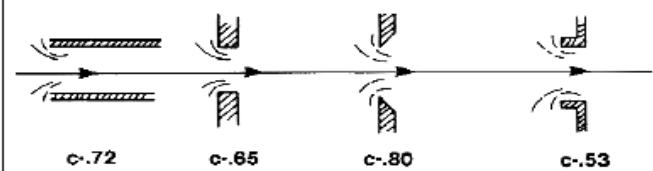
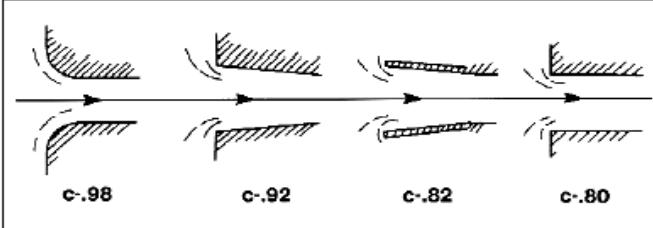
Storage Volume Req. = 5 CF

Orifice Calculation

Sized for 10-year storm

$$D = 2 * (Q_{pre10} / (\pi * C_o * (2gH)^{0.5}))^{0.5}$$

$Q_{pre10} =$ 0.019 cfs



$C_o =$ 0.65

H (head) = 0.55 ft. (to provide req'd storage)

Max = 0.95 in.

Diameter = 0.95

Use: 0.95 inch hole in outlet weir

